

Today's Meeting Agenda

- 1. Modeling parameters for Harrington Station
 - A. Background & NAAQS compliance
 - B. Harrington operating on gas
 - C. Economic Analysis

Agenda for Future Technical Conferences

- 1. Tolk Analysis Retirement dates and operating scenarios
- 2. Value of Tolk water rights
- 3. Modeling Parameters

BACKGROUND & NAAQS COMPLIANCE

Background

- NM Rate Case Stipulation states "SPS also commits to running at least one scenario in which all of SPS's coal-burning units are retired or replaced before 2030"
- Harrington Station:
 - Three coal-fired units: each ~340MW
 - Located North of Amarillo, Texas
 - ➤ Units 1 3 are scheduled to retire 2036, 2038 & 2040, respectively
- SPS intend to run <u>every</u> scenario in the Tolk Analysis in which all three Harrington units are converted to operate on natural gas by <u>2025</u>

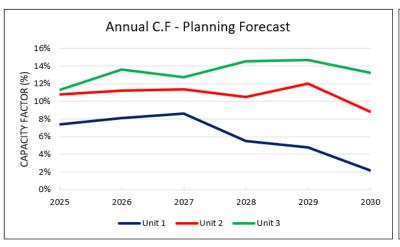
NAAQS

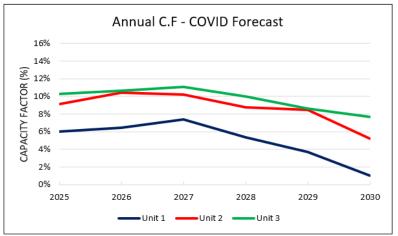
- The Clean Air Act requires the EPA to set National Ambient Air Quality Standards (including SO2)
- The TCEQ classified the area as Attainment/Unclassifiable due to a lack of monitoring data in the area
- In December 2016, TCEQ installed an SO2 monitor in the vicinity of Harrington Station to collect ambient air data
- Readings from the monitor exceed the standards
- Harrington emits ~99% of the SO2 emissions in Potter County
- Emphasis will be on SPS to produce implementation plan
- Anticipated compliance date: By 2025
- Agreed Order October 2020

Compliance Solutions

- Installation of environmental controls on three units*
- Early retirement of all three units (EOY 2024)
- Conversion of all three units to natural gas
- Combination of the above

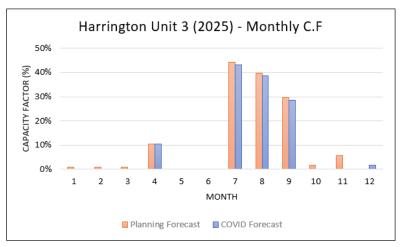
^{*}Installation of environmental controls is cost prohibitive. Based on feedback from previous technical conferences environmental controls will not be presented today 7

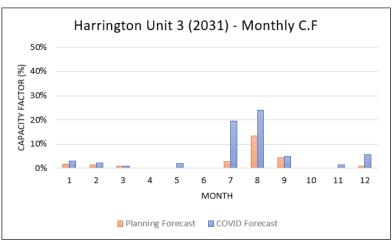



HARRINGTON OPERATING ON GAS

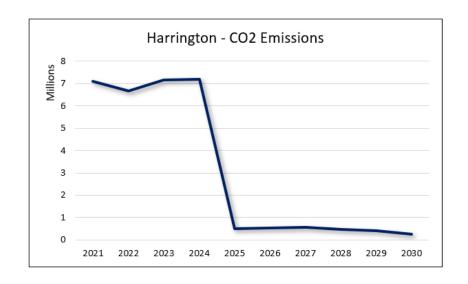
Harrington on Gas

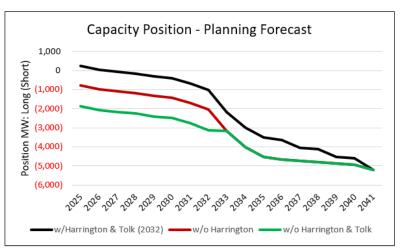
- Fuel change only
- Low cost solution to:
 - Meet NAAQs compliance
 - Continue to provide over 1,000MW of <u>year-round</u> capacity
- System reliability benefits
- After the conversion to gas, the Harrington units act as "peaking" generation
 - Low capacity factors
 - Provide energy during times of high demand or low renewable output

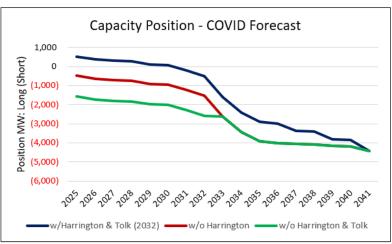

Low Annual Capacity Factors



 The Harrington Units will provide "peaking generation" with projected capacity factors <10 - 15% depending on load forecast


Capacity Factors by Month


- In the near term, Harrington will provide generation during the peak Summer months
- Harrington will support the integration of new renewables by providing energy during hours of low renewable generation


Harrington Annual CO2 Emissions

- Converting Harrington to gas lowers CO2 emissions by ~95% over a 10-year period
- Reduction is the result of lower CO2 intensity and a low capacity factor

Summer Capacity Position

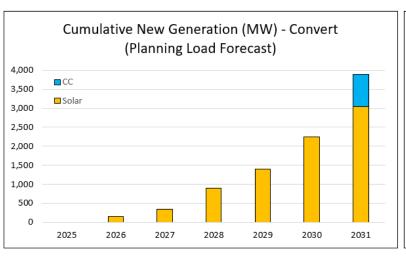
- Including Tolk & Harrington, SPS has sufficient capacity until between 2027 & 2031 depending on load forecast
- Retiring Harrington EOY 2024 will create an immediate capacity need of between ~500MW and 800MW, rising to between ~1,000MW and 1,400MW by 2030
- Retiring both Tolk and Harrington EOY 2024 will create an immediate capacity need of between ~1,600MW and 1,900MW rising to between ~2,000MW and 2,400MW by 2030

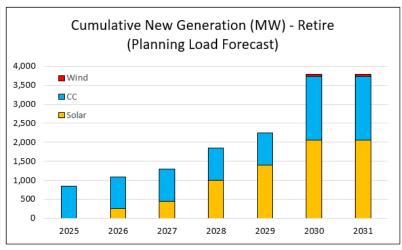
Retiring Gas Generation

- SPS's entire fleet of gas steam generation (1,624MW) is scheduled to retire by EOY 2034
- 1,138MW is scheduled to retire by EOY 2030
- Harrington Station provides 1,021MW of capacity
- Tolk Station provides 1,069MW of capacity
- Potentially 3,228MW of thermal generation could be retired by 2030
- SPS owns 4,335MW of thermal generation
- Retiring this amount of thermal generation will require new thermal generation

Economic Analysis

Economic Analysis

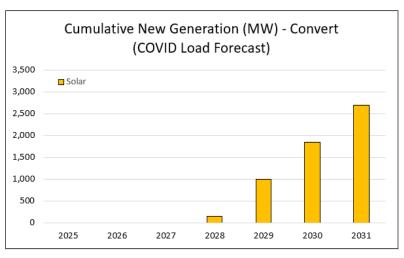

Planning Forecast		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$16,045
Early Retirement (2024)	\$116	\$16,161

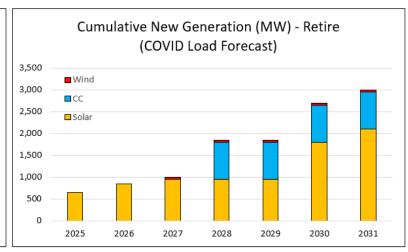

COVID Forecast		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$13,951
Early Retirement (2024)	\$76	\$14,027

- Converting the units to gas saves between \$76M \$116M (PVRR) when compared to an early retirement
- The Encompass model:
 - ➤ Added <u>more</u> new renewable generation by 2031 when converting the units to gas
 - > Added an additional combined cycle unit when retiring Harrington EOY2024

DRAFT

Expansion Plans – Planning Forecast



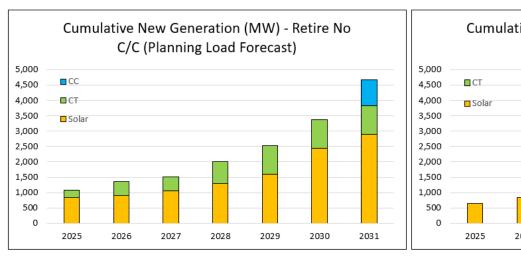


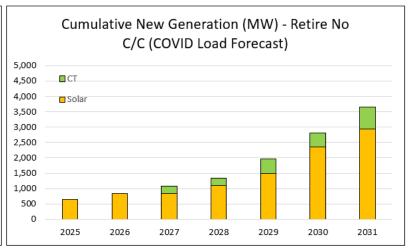
- When converting to gas (left graph), the Encompass model added 3,050MW of new solar and a combined cycle by EOY 2031
- When retiring the Harrington Units (right graph), the Encompass model added 2,050MW of solar, 50MW of wind and two combined cycles by EOY 2031

DRAFT

Expansion Plans – COVID Forecast

- When converting to gas (left graph), the Encompass model added 2,700MW of solar by EOY 2031
- When retiring the Harrington Units (right graph), the Encompass model added 2,100MW of solar, 50MW of wind and a combined cycle by EOY 2031


Economic Analysis (w/o CC)


Planning Forecast		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$16,045
Early Retirement (2024)	\$116	\$16,161
Early Retirement (2024) - No CC	\$364	\$16,409

COVID Forecast		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$13,951
Early Retirement (2024)	\$76	\$14,027
Early Retirement (2024) - No CC	\$206	\$14,157

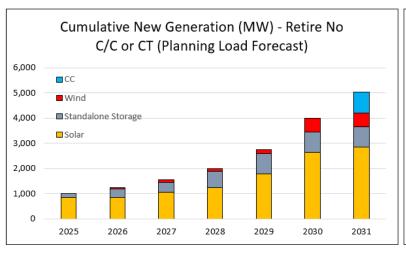
- The economic analysis was recalculated restricting encompass from adding a combined cycle before EOY 2030
- Converting the units to gas saves between \$206M \$364M (PVRR) when compared to an early retirement

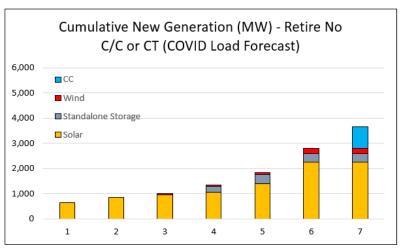
DRAFTExpansion Plan w/o CC before 2030

- Depending on the load forecast, when retiring Harrington and restricting the model from adding a CC before EOY 2030, it added between:
- 2,900MW of solar, 4 CTs and 1 combined cycle, and
- 2,950MW of solar and 3 CTs

DRAFT

Economic Analysis (w/o CC/CT)


Planning Forecast		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$16,045
Early Retirement (2024)	\$116	\$16,161
Early Retirement (2024) - No CC	\$364	\$16,409
Early Retirement (2024) - No CT/CC	\$1,345	\$17,390


COVID Forecast		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$13,951
Early Retirement (2024)	\$76	\$14,027
Early Retirement (2024) - No CC	\$206	\$14,157
Early Retirement (2024) - No CT/CC	\$397	\$14,348

- The economic analysis was once again re-run restricting encompass from selecting a combined cycle or combustion turbines before EOY 2030
- Converting the units to gas saves between \$397M \$1,345M (PVRR) when compared to an early retirement

DRAFT

Expansion Plan w/o CC/CT before 2030

- Depending on the load forecast, when retiring Harrington and restricting the model from adding a CC or CTs before EOY 2030, it added between:
- 800MW of storage, 550MW of wind, 2,850MW of solar, and a CC in 2031
- 350MW of storage, 200MW of wind, 2,250MW of solar, and a CC in 2031

Summary

- Converting the Harrington Units to operate on natural gas:
 - ➤ Is a low cost and low risk solution for NAAQs compliance
 - ➤ Is the lowest cost alternative compared to other compliance strategies
 - Provides year-round capacity and generation, benefitting the integration of additional renewables onto the SPS system
 - ➤ Carbon Emissions at Harrington Station are reduced by ~95% over a 10-year period

Xcel Energy®